Abstract for 2022 ISEMPH annual meeting in Lisbon, Portugal:
Pain is among the most common reasons a patient seeks medical care. However, pain itself is not always problematic. Responding to painful stimuli protects an organism from physical harm. Here we suggest another function: pain protects organisms from pathogens. Protection from infection is orchestrated by local effects of pain neuron activation, regulation of pain at the CNS, and subjective experience of pain. Mechanisms underlying the regulation of pain and immunity overlap considerably, suggesting that pain may be another arm of the immune system. Notably, pain is used by clinicians as a sign of likely infection in wounds and after surgery. Some pain neurons express receptors that detect pathogens; when activated, these neurons initiate immune responses against pathogens. One prediction of this hypothesis is that pathogens should engage strategies to block pain. Accordingly, SARS-CoV2 recently was shown encode peptides that interfere with pain. Other parasites and bacteria also disrupt pain signaling, including M. leprae which destroys pain neurons. Because some pathogens block pain, it could be adaptive for hosts to have an anticipatory counter-response against microbial manipulation of the pain system. This could lead to higher pain sensitization. We discuss treatment implications for chronic pain, long COVID, and opioid dependence.
Authors: Kevin Lozo, Athena Aktipis, Joe Alcock
References of special merit:
Oaten et. al 2015 The Effect of Disgust on Pain Sensitivity
Chiu. 2018 Infection, Pain and Itch
Cohen et al (2019). Cutaneous TRPV1+ Neurons Trigger Protective Innate Type 17 Anticipatory Immunity
Table. Effect of opioid analgesics on infection | |||
Condition | Exposure | Effect | Reference |
Abdominopelvic surgery | Preoperative opioid use | Increased postoperative healthcare utilization and morbidity | [81] |
Hospitalized patients receiving broad spectrum antibiotics | Moderate to high opioid use | Increased risk of Clostridiales difficile infection | [82] |
Patients with and without HIV | Prescription opioid use 12 months prior | Increased risk of community acquired pneumonia | [83] |
Invasive pneumococcal disease | Current opioid use | Increased risk of invasive pneumococcal disease | [84] |
Rheumatoid arthritis | Current opioid use | Increased risk of hospitalization for infection | [85] |
Cirrhosis | Chronic opioid use | Increased risk of endotoxemia, dysbiosis, and readmission | [42] |
HIV | Opioid abuse | Accelerated HIV progression | [86] |
Crohn’s disease | Narcotic analgesic treatment | Increased risk of serious infection and mortality | [47] |
Pain-Blocking Mechanism | Pathogen |
Interference with TRPV1 nociceptors | Porphyromonas gingivalis and SARS-CoV2 |
Destruction of sensory neurons and anesthesia | Mycoplasma leprae and Mycobacterium ulcerans |
Production of opioid and opioid-like compound production | Toxoplasma canis, Ascaris suum, Dracunculus medinensis, Schistosoma mansoni, Plasmodium berghei |
Interference with opioid receptor signaling | Escherichia coli |
Synthesis of proteins that mimic enzymes responsible for morphine synthesis in the opium poppy | Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii |

1. Gaskin, D. J., & Richard, P. (2012). The economic costs of pain in the United States. The Journal of Pain: Official Journal of the American Pain Society, 13(8), 715–724. https://doi.org/10.1016/j.jpain.2012.03.009
2. Debono, D. J., Hoeksema, L. J., & Hobbs, R. D. (2013). Caring for patients with chronic pain: Pearls and pitfalls. The Journal of the American Osteopathic Association, 113(8), 620–627. https://doi.org/10.7556/jaoa.2013.023
3. Rudd, R. A. (2016). Increases in Drug and Opioid-Involved Overdose Deaths—United States, 2010–2015. MMWR. Morbidity and Mortality Weekly Report, 65. https://doi.org/10.15585/mmwr.mm655051e1
4. Hedegaard, H., Bastian, B. A., Trinidad, J. P., Spencer, M., & Warner, M. (2018). Drugs most frequently involved in drug overdose deaths: United States, 2011-2016.
5. Mercadante, S., Arcuri, E., & Santoni, A. (2019). Opioid-Induced Tolerance and Hyperalgesia. CNS Drugs, 33(10), 943–955.
6. Chang, G., Chen, L., & Mao, J. (2007). Opioid Tolerance and Hyperalgesia. Medical Clinics, 91(2), 199–211. https://doi.org/10.1016/j.mcna.2006.10.003
7. Hayhurst, C. J., & Durieux, M. E. (2016). Differential opioid tolerance and opioid-induced hyperalgesia: A clinical reality. Anesthesiology, 124(2), 483–488.
8. Zhang, L., Kline, R. H., McNearney, T. A., Johnson, M. P., & Westlund, K. N. (2014). Cannabinoid receptor 2 agonist attenuates pain related behavior in rats with chronic alcohol/high fat diet induced pancreatitis. Molecular Pain, 10, 66. https://doi.org/10.1186/1744-8069-10-66
9. Meldrum, M. L. (2003). A capsule history of pain management. Jama, 290(18), 2470–2475.
10. Williams, A. C. de C. (2016). What can evolutionary theory tell us about chronic pain? PAIN, 157(4), 788–790. https://doi.org/10.1097/j.pain.0000000000000464
11. Burrell, B. D. (2017). Comparative biology of pain: What invertebrates can tell us about how nociception works. Journal of Neurophysiology, 117(4), 1461–1473. https://doi.org/10.1152/jn.00600.2016
12. Crook, R. J., Dickson, K., Hanlon, R. T., & Walters, E. T. (2014). Nociceptive sensitization reduces predation risk. Current Biology: CB, 24(10), 1121–1125. https://doi.org/10.1016/j.cub.2014.03.043
13. Chapman, C. R., Tuckett, R. P., & Song, C. W. (2008). Pain and Stress in a Systems Perspective. The Journal of Pain : Official Journal of the American Pain Society, 9(2), 122–145. https://doi.org/10.1016/j.jpain.2007.09.006
14. Nesse, R. M., & Schulkin, J. (2019). An evolutionary medicine perspective on pain and its disorders. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1785). https://doi.org/10.1098/rstb.2019.0288
15. Wall, P. D. (1979). On the relation of injury to pain. The John J. Bonica lecture. Pain, 6(3), 253–264. https://doi.org/10.1016/0304-3959(79)90047-2
16. Nesse, R. M. (2001). The smoke detector principle. Natural selection and the regulation of defensive responses. Annals of the New York Academy of Sciences, 935, 75–85.
17. Nesse, R. M., & Stearns, S. C. (2008). The great opportunity: Evolutionary applications to medicine and public health. Evolutionary Applications, 1(1), 28–48.
18. Adamo, S. A., & McMillan, L. E. (2019). Listening to your gut: Immune challenge to the gut sensitizes body wall nociception in the caterpillar Manduca sexta. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1785), 20190278. https://doi.org/10.1098/rstb.2019.0278
19. Khuong, T. M., Wang, Q.-P., Manion, J., Oyston, L. J., Lau, M.-T., Towler, H., Lin, Y. Q., & Neely, G. G. (2019). Nerve injury drives a heightened state of vigilance and neuropathic sensitization in Drosophila. Science Advances, 5(7), eaaw4099. https://doi.org/10.1126/sciadv.aaw4099
20. Lister, K. C., Bouchard, S. M., Markova, T., Aternali, A., Denecli, P., Pimentel, S. D., Majeed, M., Austin, J.-S., de C. Williams, A. C., & Mogil, J. S. (2020). Chronic pain produces hypervigilance to predator odor in mice. Current Biology, 30(15), R866–R867. https://doi.org/10.1016/j.cub.2020.06.025
21. Treede, R.-D. (2016). Gain control mechanisms in the nociceptive system. PAIN, 157(6), 1199–1204. https://doi.org/10.1097/j.pain.0000000000000499
22. Benedetti, F. (2008). Mechanisms of placebo and placebo-related effects across diseases and treatments. Annual Review of Pharmacology and Toxicology, 48, 33–60. https://doi.org/10.1146/annurev.pharmtox.48.113006.094711
23. Crosson, T., Roversi, K., Balood, M., Othman, R., Ahmadi, M., Wang, J.-C., Pereira, P. J. S., Tabatabaei, M., Couture, R., Eichwald, T., Latini, A., Prediger, R. D., Rangachari, M., Seehus, C. R., Foster, S. L., & Talbot, S. (2019). Profiling of how nociceptor neurons detect danger – new and old foes. Journal of Internal Medicine, 286(3), 268–289. https://doi.org/10.1111/joim.12957
24. Chiu, I. M. (2017). Infection, Pain, and Itch. Neuroscience Bulletin, 34(1), 109–119. https://doi.org/10.1007/s12264-017-0098-1
25. Zhang, L., Meng, J., Ban, Y., Jalodia, R., Chupikova, I., Fernandez, I., Brito, N., Sharma, U., Abreu, M. T., & Ramakrishnan, S. (2019). Morphine tolerance is attenuated in germfree mice and reversed by probiotics, implicating the role of gut microbiome. Proceedings of the National Academy of Sciences, 116(27), 13523–13532.
26. Chiu, I. M., Heesters, B. A., Ghasemlou, N., Von Hehn, C. A., Zhao, F., Tran, J., Wainger, B., Strominger, A., Muralidharan, S., Horswill, A. R., Bubeck Wardenburg, J., Hwang, S. W., Carroll, M. C., & Woolf, C. J. (2013). Bacteria activate sensory neurons that modulate pain and inflammation. Nature, 501(7465), 52–57. https://doi.org/10.1038/nature12479
27. Wang, F., Meng, J., Zhang, L., Johnson, T., Chen, C., & Roy, S. (2018). Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model. Scientific Reports, 8(1), 3596.
28. Pinho-Ribeiro, F. A., Verri, W. A., & Chiu, I. M. (2017). Nociceptor Sensory Neuron-Immune Interactions in Pain and Inflammation. Trends in Immunology, 38(1), 5–19. https://doi.org/10.1016/j.it.2016.10.001
29. Chiu, I. M., Von Hehn, C. A., & Woolf, C. J. (2012). Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nature Neuroscience, 15(8), 1063–1067.
30. Liu, X.-J., Zhang, Y., Liu, T., Xu, Z.-Z., Park, C.-K., Berta, T., Jiang, D., & Ji, R.-R. (2014). Nociceptive neurons regulate innate and adaptive immunity and neuropathic pain through MyD88 adapter. Cell Research, 24(11), 1374–1377. https://doi.org/10.1038/cr.2014.106
31. Cohen, J. A., Edwards, T. N., Liu, A. W., Hirai, T., Jones, M. R., Wu, J., Li, Y., Zhang, S., Ho, J., Davis, B. M., Albers, K. M., & Kaplan, D. H. (2019). Cutaneous TRPV1+ Neurons Trigger Protective Innate Type 17 Anticipatory Immunity. Cell, 178(4), 919-932.e14. https://doi.org/10.1016/j.cell.2019.06.022
32. Lai, N. Y., Musser, M. A., Pinho-Ribeiro, F. A., Baral, P., Jacobson, A., Ma, P., Potts, D. E., Chen, Z., Paik, D., Soualhi, S., Yan, Y., Misra, A., Goldstein, K., Lagomarsino, V. N., Nordstrom, A., Sivanathan, K. N., Wallrapp, A., Kuchroo, V. K., Nowarski, R., … Chiu, I. M. (2020). Gut-Innervating Nociceptor Neurons Regulate Peyer’s Patch Microfold Cells and SFB Levels to Mediate Salmonella Host Defense. Cell, 180(1), 33-49.e22. https://doi.org/10.1016/j.cell.2019.11.014
33. Jain, A., Hakim, S., & Woolf, C. J. (2020). Unraveling the Plastic Peripheral Neuroimmune Interactome. The Journal of Immunology, 204(2), 257–263. https://doi.org/10.4049/jimmunol.1900818
34. Roy, S., Ninkovic, J., Banerjee, S., Charboneau, R. G., Das, S., Dutta, R., Kirchner, V. A., Koodie, L., Ma, J., & Meng, J. (2011). Opioid drug abuse and modulation of immune function: Consequences in the susceptibility to opportunistic infections. Journal of Neuroimmune Pharmacology, 6(4), 442.
35. Ma, J., Wang, J., Wan, J., Charboneau, R., Chang, Y., Barke, R. A., & Roy, S. (2010). Morphine disrupts interleukin-23 (IL-23)/IL-17-mediated pulmonary mucosal host defense against Streptococcus pneumoniae infection. Infection and Immunity, 78(2), 830–837. https://doi.org/10.1128/IAI.00914-09
36. Wang, J., Ma, J., Charboneau, R., Barke, R., & Roy, S. (2011). Morphine Inhibits Murine Dendritic Cell IL-23 Production by Modulating Toll-like Receptor 2 and Nod2 Signaling. The Journal of Biological Chemistry, 286(12), 10225–10232. https://doi.org/10.1074/jbc.M110.188680
37. DeLeo, J. A., Tanga, F. Y., & Tawfik, V. L. (2004). Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 10(1), 40–52. https://doi.org/10.1177/1073858403259950
38. Roeckel, L.-A., Le Coz, G.-M., Gavériaux-Ruff, C., & Simonin, F. (2016). Opioid-induced hyperalgesia: Cellular and molecular mechanisms. Neuroscience, 338, 160–182. https://doi.org/10.1016/j.neuroscience.2016.06.029
39. Eisenstein, T. K. (2019). The Role of Opioid Receptors in Immune System Function. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.02904
40. Raghavendra, V., Rutkowski, M. D., & DeLeo, J. A. (2002). The Role of Spinal Neuroimmune Activation in Morphine Tolerance/Hyperalgesia in Neuropathic and Sham-Operated Rats. Journal of Neuroscience, 22(22), 9980–9989. https://doi.org/10.1523/JNEUROSCI.22-22-09980.2002
41. Kang, M., Mischel, R. A., Bhave, S., Komla, E., Cho, A., Huang, C., Dewey, W. L., & Akbarali, H. I. (2017). The effect of gut microbiome on tolerance to morphine mediated antinociception in mice. Scientific Reports, 7, 42658. https://doi.org/10.1038/srep42658
42. Acharya, C., Betrapally, N. S., Gillevet, P. M., Sterling, R. K., Akbarali, H., White, M. B., Ganapathy, D., Fagan, A., Sikaroodi, M., & Bajaj, J. S. (2017). Chronic opioid use is associated with altered gut microbiota and predicts readmissions in patients with cirrhosis. Alimentary Pharmacology & Therapeutics, 45(2), 319–331. https://doi.org/10.1111/apt.13858
43. Diogenes, A., Ferraz, C. C. R., Akopian, A. N., Henry, M. A., & Hargreaves, K. M. (2011). LPS Sensitizes TRPV1 via Activation of TLR4 in Trigeminal Sensory Neurons: Journal of Dental Research. https://doi.org/10.1177/0022034511400225
44. Zhao, J., Bi, W., Xiao, S., Lan, X., Cheng, X., Zhang, J., Lu, D., Wei, W., Wang, Y., Li, H., Fu, Y., & Zhu, L. (2019). Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Scientific Reports, 9(1), 5790. https://doi.org/10.1038/s41598-019-42286-8
45. Plein, L. M., & Rittner, H. L. (2018). Opioids and the immune system – friend or foe. British Journal of Pharmacology, 175(14), 2717–2725. https://doi.org/10.1111/bph.13750
46. Pergolizzi, J., Böger, R. H., Budd, K., Dahan, A., Erdine, S., Hans, G., Kress, H.-G., Langford, R., Likar, R., Raffa, R. B., & Sacerdote, P. (2008). Opioids and the management of chronic severe pain in the elderly: Consensus statement of an International Expert Panel with focus on the six clinically most often used World Health Organization Step III opioids (buprenorphine, fentanyl, hydromorphone, methadone, morphine, oxycodone). Pain Practice: The Official Journal of World Institute of Pain, 8(4), 287–313. https://doi.org/10.1111/j.1533-2500.2008.00204.x
47. Lichtenstein, G. R., Feagan, B. G., Cohen, R. D., Salzberg, B. A., Diamond, R. H., Price, S., Langholff, W., Londhe, A., & Sandborn, W. J. (2012). Serious infection and mortality in patients with Crohn’s disease: More than 5 years of follow-up in the TREATTM registry. The American Journal of Gastroenterology, 107(9), 1409–1422. https://doi.org/10.1038/ajg.2012.218
48. Weng, T.-C., Chen, C.-C., Toh, H.-S., & Tang, H.-J. (2011). Ibuprofen worsens Streptococcus pyogenes soft tissue infections in mice. Journal of Microbiology, Immunology and Infection, 44(6), 418–423. https://doi.org/10.1016/j.jmii.2011.04.012
49. Souyri, C., Olivier, P., Grolleau, S., Lapeyre-Mestre, M., & French Network of Pharmacovigilance Centres. (2008). Severe necrotizing soft-tissue infections and nonsteroidal anti-inflammatory drugs. Clinical and Experimental Dermatology, 33(3), 249–255. https://doi.org/10.1111/j.1365-2230.2007.02652.x
50. Demeslay, J., De Bonnecaze, G., Vairel, B., Chaput, B., Pessey, J.-J., Serrano, E., & Vergez, S. (2014). Possible role of anti-inflammatory drugs in complications of pharyngitis. A retrospective analysis of 163 cases. European Annals of Otorhinolaryngology, Head and Neck Diseases, 131(5), 299–303. https://doi.org/10.1016/j.anorl.2013.08.005
51. Liang, X., Liu, R., Chen, C., Ji, F., & Li, T. (2016). Opioid system modulates the immune function: A review. Translational Perioperative and Pain Medicine, 1(1), 5.
52. Jamali, A., Mahdavi, M., Shahabi, S., Hassan, Z. M., Sabahi, F., Javan, M., Farsani, M. J., Parsania, M., & Bamdad, T. (2007). Naloxone, an opioid receptor antagonist, enhances induction of protective immunity against HSV-1 infection in BALB/c mice. Microbial Pathogenesis, 43(5–6), 217–223.
53. Mischel, R. A., Muchhala, K. H., Dewey, W. L., & Akbarali, H. I. (2020). The “Culture” of Pain Control: A Review of Opioid-Induced Dysbiosis (OID) in Antinociceptive Tolerance. The Journal of Pain, 21(7), 751–762. https://doi.org/10.1016/j.jpain.2019.11.015
54. Babrowski, T., Holbrook, C., Moss, J., Gottlieb, L., Valuckaite, V., Zaborin, A., Poroyko, V., Liu, D. C., Zaborina, O., & Alverdy, J. C. (2012). Pseudomonas aeruginosa virulence expression is directly activated by morphine and is capable of causing lethal gut derived sepsis in mice during chronic morphine administration. Annals of Surgery, 255(2), 386.
55. Meng, J., Yu, H., Ma, J., Wang, J., Banerjee, S., Charboneau, R., Barke, R. A., & Roy, S. (2013). Morphine induces bacterial translocation in mice by compromising intestinal barrier function in a TLR-dependent manner. PloS One, 8(1), e54040.
56. Foster, K. R., Schluter, J., Coyte, K. Z., & Rakoff-Nahoum, S. (2017). The evolution of the host microbiome as an ecosystem on a leash. Nature, 548(7665), 43–51.
57. Sharma, U., Olson, R. K., Erhart, F. N., Zhang, L., Meng, J., Segura, B., Banerjee, S., Sharma, M., Saluja, A. K., Ramakrishnan, S., Abreu, M. T., & Roy, S. (2020). Prescription Opioids induce Gut Dysbiosis and Exacerbate Colitis in a Murine Model of Inflammatory Bowel Disease. Journal of Crohn’s and Colitis, 14(6), 801–817. https://doi.org/10.1093/ecco-jcc/jjz188
58. Finlay, B. B., & McFadden, G. (2006). Anti-immunology: Evasion of the host immune system by bacterial and viral pathogens. Cell, 124(4), 767–782. https://doi.org/10.1016/j.cell.2006.01.034
59. Hess, S., & Rambukkana, A. (2019). Cell Biology of Intracellular Adaptation of Mycobacterium leprae in the Peripheral Nervous System. Microbiology Spectrum, 7(4). https://doi.org/10.1128/microbiolspec.BAI-0020-2019
60. Robbins, G., Tripathy, V. M., Misra, V. N., Mohanty, R. K., Shinde, V. S., Gray, K. M., & Schug, M. D. (2009). Ancient skeletal evidence for leprosy in India (2000 B.C.). PloS One, 4(5), e5669. https://doi.org/10.1371/journal.pone.0005669
61. Tayeh, A., Cairncross, S., & Cox, F. E. G. (2017). Guinea worm: From Robert Leiper to eradication. Parasitology, 144(12), 1643–1648. https://doi.org/10.1017/S0031182017000683
62. Pavone, F., Luvisetto, S., Marinelli, S., Straface, E., Fabbri, A., Falzano, L., Fiorentini, C., & Malorni, W. (2009). The Rac GTPase-activating bacterial protein toxin CNF1 induces analgesia up-regulating mu-opioid receptors. Pain, 145(1–2), 219–229. https://doi.org/10.1016/j.pain.2009.06.026
63. Golabi, M., Naem, S., Imani, M., & Dalirezh, N. (2016). Evidence of morphine like substance and μ-opioid receptor expression in Toxacara canis (Nematoda: Ascaridae). Veterinary Research Forum: An International Quarterly Journal, 7(4), 335–339.
64. Zhu, W., Pryor, S. C., Putnam, J., Cadet, P., & Stefano, G. B. (2004). Opiate alkaloids and nitric oxide production in the nematode Ascaris suum. The Journal of Parasitology, 90(1), 15–22. https://doi.org/10.1645/GE-3208
65. Zhu, W., Baggerman, G., Secor, W. E., Casares, F., Pryor, S. C., Fricchione, G. L., Ruiz-Tiben, E., Eberhard, M. L., Bimi, L., & Stefano, G. B. (2002). Dracunculus medinensis and Schistosoma mansoni contain opiate alkaloids. Annals of Tropical Medicine and Parasitology, 96(3), 309–316. https://doi.org/10.1179/000349802125000808
66. Blake, K. J., Baral, P., Voisin, T., Lubkin, A., Pinho-Ribeiro, F. A., Adams, K. L., Roberson, D. P., Ma, Y. C., Otto, M., Woolf, C. J., Torres, V. J., & Chiu, I. M. (2018). Staphylococcus aureus produces pain through pore-forming toxins and neuronal TRPV1 that is silenced by QX-314. Nature Communications, 9. https://doi.org/10.1038/s41467-017-02448-6
67. Zhan, S. H., & French, L. (2019). Sequence similarity searches for morphine biosynthesis enzymes in bacteria yield putative targets for understanding associations between infection and opiate administration. Journal of Medical Microbiology, 68(6), 952–956. https://doi.org/10.1099/jmm.0.001001
68. Moutal, A., Martin, L. F., Boinon, L., Gomez, K., Ran, D., Zhou, Y., Stratton, H. J., Cai, S., Luo, S., Gonzalez, K. B., Perez-Miller, S., Patwardhan, A., Ibrahim, M. M., & Khanna, R. (2020). SARS-CoV-2 Spike protein co-opts VEGF-A/Neuropilin-1 receptor signaling to induce analgesia. PAIN, Articles in Press. https://doi.org/10.1097/j.pain.0000000000002097
69. Kikkert, M. (2020). Innate Immune Evasion by Human Respiratory RNA Viruses. Journal of Innate Immunity, 12(1), 4–20. https://doi.org/10.1159/000503030
70. Cornblath, D. R., & McArthur, J. C. (1988). Predominantly sensory neuropathy in patients with AIDS and AIDS-related complex. Neurology, 38(5), 794–794.
71. Hyoju, S. K., Zaborin, A., Keskey, R., Sharma, A., Arnold, W., van den Berg, F., Kim, S. M., Gottel, N., Bethel, C., & Charnot-Katsikas, A. (2019). Mice fed an obesogenic Western diet, administered antibiotics, and subjected to a sterile surgical procedure develop lethal septicemia with multidrug-resistant pathobionts. MBio, 10(4), e00903–19.
72. Pham, T. A. N., & Lawley, T. D. (2014). Emerging insights on intestinal dysbiosis during bacterial infections. Current Opinion in Microbiology, 17, 67–74. https://doi.org/10.1016/j.mib.2013.12.002
73. Amaral, F. A., Sachs, D., Costa, V. V., Fagundes, C. T., Cisalpino, D., Cunha, T. M., Ferreira, S. H., Cunha, F. Q., Silva, T. A., Nicoli, J. R., Vieira, L. Q., Souza, D. G., & Teixeira, M. M. (2008). Commensal microbiota is fundamental for the development of inflammatory pain. Proceedings of the National Academy of Sciences, 105(6), 2193–2197. https://doi.org/10.1073/pnas.0711891105
74. Shen, S., Lim, G., You, Z., Ding, W., Huang, P., Ran, C., Doheny, J., Caravan, P., Tate, S., Hu, K., Kim, H., McCabe, M., Huang, B., Xie, Z., Kwon, D., Chen, L., & Mao, J. (2017). Gut microbiota is critical for the induction of chemotherapy-induced pain. Nature Neuroscience, 20(9), 1213–1216. https://doi.org/10.1038/nn.4606
75. Yang, C., Fang, X., Zhan, G., Huang, N., Li, S., Bi, J., Jiang, R., Yang, L., Miao, L., Zhu, B., Luo, A., & Hashimoto, K. (2019). Key role of gut microbiota in anhedonia-like phenotype in rodents with neuropathic pain. Translational Psychiatry, 9(1), 1–11. https://doi.org/10.1038/s41398-019-0379-8
76. Chichlowski, M., & Rudolph, C. (2015). Visceral Pain and Gastrointestinal Microbiome. Journal of Neurogastroenterology and Motility, 21(2), 172–181. https://doi.org/10.5056/jnm15025
77. Akbarali, H. I., & Dewey, W. L. (2019). Gastrointestinal motility, dysbiosis and opioid-induced tolerance: Is there a link? Nature Reviews. Gastroenterology & Hepatology, 16(6), 323–324. https://doi.org/10.1038/s41575-019-0150-x
78. Grunspan, D. Z., Nesse, R. M., Barnes, M. E., & Brownell, S. E. (2018). Core principles of evolutionary medicineA Delphi study. Evolution, Medicine, and Public Health, 2018(1), 13–23. https://doi.org/10.1093/emph/eox025
79. Manus, M. B. (2018). Evolutionary mismatch. Evolution, Medicine, and Public Health, 2018(1), 190–191. https://doi.org/10.1093/emph/eoy023
80. Bennett, K. (2018). Environment of Evolutionary Adaptedness (EEA). In V. Zeigler-Hill & T. K. Shackelford (Eds.), Encyclopedia of Personality and Individual Differences (pp. 1–3). Springer International Publishing. https://doi.org/10.1007/978-3-319-28099-8_1627-1
81. Cron, D. C., Englesbe, M. J., Bolton, C. J., Joseph, M. T., Carrier, K. L., Moser, S. E., Waljee, J. F., Hilliard, P. E., Kheterpal, S., & Brummett, C. M. (2017). Preoperative Opioid Use is Independently Associated With Increased Costs and Worse Outcomes After Major Abdominal Surgery. Annals of Surgery, 265(4), 695–701. https://doi.org/10.1097/SLA.0000000000001901
82. Mora, A. L., Salazar, M., Pablo-Caeiro, J., Frost, C. P., Yadav, Y., DuPont, H. L., & Garey, K. W. (2012). Moderate to high use of opioid analgesics are associated with an increased risk of Clostridium difficile infection. The American Journal of the Medical Sciences, 343(4), 277–280. https://doi.org/10.1097/MAJ.0b013e31822f42eb
83. Edelman, E. J., Gordon, K. S., Crothers, K., Akgün, K., Bryant, K. J., Becker, W. C., Gaither, J. R., Gibert, C. L., Gordon, A. J., Marshall, B. D. L., Rodriguez-Barradas, M. C., Samet, J. H., Justice, A. C., Tate, J. P., & Fiellin, D. A. (2019). Association of Prescribed Opioids With Increased Risk of Community-Acquired Pneumonia Among Patients With and Without HIV. JAMA Internal Medicine, 179(3), 297–304. https://doi.org/10.1001/jamainternmed.2018.6101
84. Wiese, A. D., Griffin, M. R., Schaffner, W., Stein, C. M., Greevy, R. A., Mitchel, E. F., & Grijalva, C. G. (2018). Opioid Analgesic Use and Risk for Invasive Pneumococcal Diseases: A Nested Case-Control Study. Annals of Internal Medicine, 168(6), 396–404. https://doi.org/10.7326/M17-1907
85. Wiese, A. D., Griffin, M. R., Stein, C. M., Mitchel Jr, E. F., & Grijalva, C. G. (2016). Opioid analgesics and the risk of serious infections among patients with rheumatoid arthritis: A self-controlled case series study. Arthritis & Rheumatology, 68(2), 323–331.
86. Meng, J., Sindberg, G. M., & Roy, S. (2015). Disruption of gut homeostasis by opioids accelerates HIV disease progression. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.00643