Menu Home

Do microbes gain when there is no pain

Abstract for 2022 ISEMPH annual meeting in Lisbon, Portugal:

Pain is among the most common reasons a patient seeks medical care. However, pain itself is not always problematic. Responding to painful stimuli protects an organism from physical harm. Here we suggest another function: pain protects organisms from pathogens. Protection from infection is orchestrated by local effects of pain neuron activation, regulation of pain at the CNS, and subjective experience of pain. Mechanisms underlying the regulation of pain and immunity overlap considerably, suggesting that pain may be another arm of the immune system. Notably, pain is used by clinicians as a sign of likely infection in wounds and after surgery. Some pain neurons express receptors that detect pathogens; when activated, these neurons initiate immune responses against pathogens. One prediction of this hypothesis is that pathogens should engage strategies to block pain. Accordingly, SARS-CoV2 recently was shown encode peptides that interfere with pain. Other parasites and bacteria also disrupt pain signaling, including M. leprae which destroys pain neurons. Because some pathogens block pain, it could be adaptive for hosts to have an anticipatory counter-response against microbial manipulation of the pain system. This could lead to higher pain sensitization. We discuss treatment implications for chronic pain, long COVID, and opioid dependence. 

Authors: Kevin Lozo, Athena Aktipis, Joe Alcock

References of special merit:

Oaten et. al 2015 The Effect of Disgust on Pain Sensitivity

Chiu. 2018 Infection, Pain and Itch

 Cohen et al (2019). Cutaneous TRPV1+ Neurons Trigger Protective Innate Type 17 Anticipatory Immunity

Table. Effect of opioid analgesics on infection
ConditionExposureEffectReference
Abdominopelvic surgeryPreoperative opioid useIncreased postoperative healthcare utilization and morbidity[81]
Hospitalized patients receiving broad spectrum antibioticsModerate to high opioid useIncreased risk of Clostridiales difficile infection[82]
Patients with and without HIVPrescription opioid use 12 months priorIncreased risk of community acquired pneumonia[83]
Invasive pneumococcal diseaseCurrent opioid useIncreased risk of invasive pneumococcal disease[84]
Rheumatoid arthritisCurrent opioid useIncreased risk of hospitalization for infection[85]
CirrhosisChronic opioid useIncreased risk of endotoxemia, dysbiosis, and readmission[42]
HIVOpioid abuseAccelerated HIV progression[86]
Crohn’s diseaseNarcotic analgesic treatmentIncreased risk of serious infection and mortality[47]
Table 1. Opioids increase the risk of infection, as do NSAID analgesics
Pain-Blocking MechanismPathogen
Interference with TRPV1 nociceptorsPorphyromonas gingivalis and SARS-CoV2
Destruction of sensory neurons and anesthesiaMycoplasma leprae and Mycobacterium ulcerans
Production of opioid and opioid-like compound productionToxoplasma canis, Ascaris suum, Dracunculus medinensis, Schistosoma mansoni, Plasmodium berghei
Interference with opioid receptor signalingEscherichia coli
Synthesis of proteins that mimic enzymes responsible for morphine synthesis in the opium poppyPseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii
Table 2. Multiple pathogens inhibit pain signaling
TRPV1 neurons detect pathogen molecules (red spiky ball) and trigger leukocyte recruitment in tissues distant from the original infection. This process is called “innate anticipatory immunity.”

 1. Gaskin, D. J., & Richard, P. (2012). The economic costs of pain in the United States. The Journal of Pain: Official Journal of the American Pain Society13(8), 715–724. https://doi.org/10.1016/j.jpain.2012.03.009

2. Debono, D. J., Hoeksema, L. J., & Hobbs, R. D. (2013). Caring for patients with chronic pain: Pearls and pitfalls. The Journal of the American Osteopathic Association113(8), 620–627. https://doi.org/10.7556/jaoa.2013.023

3. Rudd, R. A. (2016). Increases in Drug and Opioid-Involved Overdose Deaths—United States, 2010–2015. MMWR. Morbidity and Mortality Weekly Report65. https://doi.org/10.15585/mmwr.mm655051e1

4. Hedegaard, H., Bastian, B. A., Trinidad, J. P., Spencer, M., & Warner, M. (2018). Drugs most frequently involved in drug overdose deaths: United States, 2011-2016.

5. Mercadante, S., Arcuri, E., & Santoni, A. (2019). Opioid-Induced Tolerance and Hyperalgesia. CNS Drugs33(10), 943–955.

6. Chang, G., Chen, L., & Mao, J. (2007). Opioid Tolerance and Hyperalgesia. Medical Clinics91(2), 199–211. https://doi.org/10.1016/j.mcna.2006.10.003

7. Hayhurst, C. J., & Durieux, M. E. (2016). Differential opioid tolerance and opioid-induced hyperalgesia: A clinical reality. Anesthesiology124(2), 483–488.

8. Zhang, L., Kline, R. H., McNearney, T. A., Johnson, M. P., & Westlund, K. N. (2014). Cannabinoid receptor 2 agonist attenuates pain related behavior in rats with chronic alcohol/high fat diet induced pancreatitis. Molecular Pain10, 66. https://doi.org/10.1186/1744-8069-10-66

9. Meldrum, M. L. (2003). A capsule history of pain management. Jama290(18), 2470–2475.

10. Williams, A. C. de C. (2016). What can evolutionary theory tell us about chronic pain? PAIN157(4), 788–790. https://doi.org/10.1097/j.pain.0000000000000464

11. Burrell, B. D. (2017). Comparative biology of pain: What invertebrates can tell us about how nociception works. Journal of Neurophysiology117(4), 1461–1473. https://doi.org/10.1152/jn.00600.2016

12. Crook, R. J., Dickson, K., Hanlon, R. T., & Walters, E. T. (2014). Nociceptive sensitization reduces predation risk. Current Biology: CB24(10), 1121–1125. https://doi.org/10.1016/j.cub.2014.03.043

13. Chapman, C. R., Tuckett, R. P., & Song, C. W. (2008). Pain and Stress in a Systems Perspective. The Journal of Pain : Official Journal of the American Pain Society9(2), 122–145. https://doi.org/10.1016/j.jpain.2007.09.006

14. Nesse, R. M., & Schulkin, J. (2019). An evolutionary medicine perspective on pain and its disorders. Philosophical Transactions of the Royal Society B: Biological Sciences374(1785). https://doi.org/10.1098/rstb.2019.0288

15. Wall, P. D. (1979). On the relation of injury to pain. The John J. Bonica lecture. Pain6(3), 253–264. https://doi.org/10.1016/0304-3959(79)90047-2

16. Nesse, R. M. (2001). The smoke detector principle. Natural selection and the regulation of defensive responses. Annals of the New York Academy of Sciences935, 75–85.

17. Nesse, R. M., & Stearns, S. C. (2008). The great opportunity: Evolutionary applications to medicine and public health. Evolutionary Applications1(1), 28–48.

18. Adamo, S. A., & McMillan, L. E. (2019). Listening to your gut: Immune challenge to the gut sensitizes body wall nociception in the caterpillar Manduca sexta. Philosophical Transactions of the Royal Society B: Biological Sciences374(1785), 20190278. https://doi.org/10.1098/rstb.2019.0278

19. Khuong, T. M., Wang, Q.-P., Manion, J., Oyston, L. J., Lau, M.-T., Towler, H., Lin, Y. Q., & Neely, G. G. (2019). Nerve injury drives a heightened state of vigilance and neuropathic sensitization in Drosophila. Science Advances5(7), eaaw4099. https://doi.org/10.1126/sciadv.aaw4099

20. Lister, K. C., Bouchard, S. M., Markova, T., Aternali, A., Denecli, P., Pimentel, S. D., Majeed, M., Austin, J.-S., de C. Williams, A. C., & Mogil, J. S. (2020). Chronic pain produces hypervigilance to predator odor in mice. Current Biology30(15), R866–R867. https://doi.org/10.1016/j.cub.2020.06.025

21. Treede, R.-D. (2016). Gain control mechanisms in the nociceptive system. PAIN157(6), 1199–1204. https://doi.org/10.1097/j.pain.0000000000000499

22. Benedetti, F. (2008). Mechanisms of placebo and placebo-related effects across diseases and treatments. Annual Review of Pharmacology and Toxicology48, 33–60. https://doi.org/10.1146/annurev.pharmtox.48.113006.094711

23. Crosson, T., Roversi, K., Balood, M., Othman, R., Ahmadi, M., Wang, J.-C., Pereira, P. J. S., Tabatabaei, M., Couture, R., Eichwald, T., Latini, A., Prediger, R. D., Rangachari, M., Seehus, C. R., Foster, S. L., & Talbot, S. (2019). Profiling of how nociceptor neurons detect danger – new and old foes. Journal of Internal Medicine286(3), 268–289. https://doi.org/10.1111/joim.12957

24. Chiu, I. M. (2017). Infection, Pain, and Itch. Neuroscience Bulletin34(1), 109–119. https://doi.org/10.1007/s12264-017-0098-1

25. Zhang, L., Meng, J., Ban, Y., Jalodia, R., Chupikova, I., Fernandez, I., Brito, N., Sharma, U., Abreu, M. T., & Ramakrishnan, S. (2019). Morphine tolerance is attenuated in germfree mice and reversed by probiotics, implicating the role of gut microbiome. Proceedings of the National Academy of Sciences116(27), 13523–13532.

26. Chiu, I. M., Heesters, B. A., Ghasemlou, N., Von Hehn, C. A., Zhao, F., Tran, J., Wainger, B., Strominger, A., Muralidharan, S., Horswill, A. R., Bubeck Wardenburg, J., Hwang, S. W., Carroll, M. C., & Woolf, C. J. (2013). Bacteria activate sensory neurons that modulate pain and inflammation. Nature501(7465), 52–57. https://doi.org/10.1038/nature12479

27. Wang, F., Meng, J., Zhang, L., Johnson, T., Chen, C., & Roy, S. (2018). Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model. Scientific Reports8(1), 3596.

28. Pinho-Ribeiro, F. A., Verri, W. A., & Chiu, I. M. (2017). Nociceptor Sensory Neuron-Immune Interactions in Pain and Inflammation. Trends in Immunology38(1), 5–19. https://doi.org/10.1016/j.it.2016.10.001

29. Chiu, I. M., Von Hehn, C. A., & Woolf, C. J. (2012). Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nature Neuroscience15(8), 1063–1067.

30. Liu, X.-J., Zhang, Y., Liu, T., Xu, Z.-Z., Park, C.-K., Berta, T., Jiang, D., & Ji, R.-R. (2014). Nociceptive neurons regulate innate and adaptive immunity and neuropathic pain through MyD88 adapter. Cell Research24(11), 1374–1377. https://doi.org/10.1038/cr.2014.106

31. Cohen, J. A., Edwards, T. N., Liu, A. W., Hirai, T., Jones, M. R., Wu, J., Li, Y., Zhang, S., Ho, J., Davis, B. M., Albers, K. M., & Kaplan, D. H. (2019). Cutaneous TRPV1+ Neurons Trigger Protective Innate Type 17 Anticipatory Immunity. Cell178(4), 919-932.e14. https://doi.org/10.1016/j.cell.2019.06.022

32. Lai, N. Y., Musser, M. A., Pinho-Ribeiro, F. A., Baral, P., Jacobson, A., Ma, P., Potts, D. E., Chen, Z., Paik, D., Soualhi, S., Yan, Y., Misra, A., Goldstein, K., Lagomarsino, V. N., Nordstrom, A., Sivanathan, K. N., Wallrapp, A., Kuchroo, V. K., Nowarski, R., … Chiu, I. M. (2020). Gut-Innervating Nociceptor Neurons Regulate Peyer’s Patch Microfold Cells and SFB Levels to Mediate Salmonella Host Defense. Cell180(1), 33-49.e22. https://doi.org/10.1016/j.cell.2019.11.014

33. Jain, A., Hakim, S., & Woolf, C. J. (2020). Unraveling the Plastic Peripheral Neuroimmune Interactome. The Journal of Immunology204(2), 257–263. https://doi.org/10.4049/jimmunol.1900818

34. Roy, S., Ninkovic, J., Banerjee, S., Charboneau, R. G., Das, S., Dutta, R., Kirchner, V. A., Koodie, L., Ma, J., & Meng, J. (2011). Opioid drug abuse and modulation of immune function: Consequences in the susceptibility to opportunistic infections. Journal of Neuroimmune Pharmacology6(4), 442.

35. Ma, J., Wang, J., Wan, J., Charboneau, R., Chang, Y., Barke, R. A., & Roy, S. (2010). Morphine disrupts interleukin-23 (IL-23)/IL-17-mediated pulmonary mucosal host defense against Streptococcus pneumoniae infection. Infection and Immunity78(2), 830–837. https://doi.org/10.1128/IAI.00914-09

36. Wang, J., Ma, J., Charboneau, R., Barke, R., & Roy, S. (2011). Morphine Inhibits Murine Dendritic Cell IL-23 Production by Modulating Toll-like Receptor 2 and Nod2 Signaling. The Journal of Biological Chemistry286(12), 10225–10232. https://doi.org/10.1074/jbc.M110.188680

37. DeLeo, J. A., Tanga, F. Y., & Tawfik, V. L. (2004). Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry10(1), 40–52. https://doi.org/10.1177/1073858403259950

38. Roeckel, L.-A., Le Coz, G.-M., Gavériaux-Ruff, C., & Simonin, F. (2016). Opioid-induced hyperalgesia: Cellular and molecular mechanisms. Neuroscience338, 160–182. https://doi.org/10.1016/j.neuroscience.2016.06.029

39. Eisenstein, T. K. (2019). The Role of Opioid Receptors in Immune System Function. Frontiers in Immunology10. https://doi.org/10.3389/fimmu.2019.02904

40. Raghavendra, V., Rutkowski, M. D., & DeLeo, J. A. (2002). The Role of Spinal Neuroimmune Activation in Morphine Tolerance/Hyperalgesia in Neuropathic and Sham-Operated Rats. Journal of Neuroscience22(22), 9980–9989. https://doi.org/10.1523/JNEUROSCI.22-22-09980.2002

41. Kang, M., Mischel, R. A., Bhave, S., Komla, E., Cho, A., Huang, C., Dewey, W. L., & Akbarali, H. I. (2017). The effect of gut microbiome on tolerance to morphine mediated antinociception in mice. Scientific Reports7, 42658. https://doi.org/10.1038/srep42658

42. Acharya, C., Betrapally, N. S., Gillevet, P. M., Sterling, R. K., Akbarali, H., White, M. B., Ganapathy, D., Fagan, A., Sikaroodi, M., & Bajaj, J. S. (2017). Chronic opioid use is associated with altered gut microbiota and predicts readmissions in patients with cirrhosis. Alimentary Pharmacology & Therapeutics45(2), 319–331. https://doi.org/10.1111/apt.13858

43. Diogenes, A., Ferraz, C. C. R., Akopian, A. N., Henry, M. A., & Hargreaves, K. M. (2011). LPS Sensitizes TRPV1 via Activation of TLR4 in Trigeminal Sensory Neurons: Journal of Dental Research. https://doi.org/10.1177/0022034511400225

44. Zhao, J., Bi, W., Xiao, S., Lan, X., Cheng, X., Zhang, J., Lu, D., Wei, W., Wang, Y., Li, H., Fu, Y., & Zhu, L. (2019). Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Scientific Reports9(1), 5790. https://doi.org/10.1038/s41598-019-42286-8

45. Plein, L. M., & Rittner, H. L. (2018). Opioids and the immune system – friend or foe. British Journal of Pharmacology175(14), 2717–2725. https://doi.org/10.1111/bph.13750

46. Pergolizzi, J., Böger, R. H., Budd, K., Dahan, A., Erdine, S., Hans, G., Kress, H.-G., Langford, R., Likar, R., Raffa, R. B., & Sacerdote, P. (2008). Opioids and the management of chronic severe pain in the elderly: Consensus statement of an International Expert Panel with focus on the six clinically most often used World Health Organization Step III opioids (buprenorphine, fentanyl, hydromorphone, methadone, morphine, oxycodone). Pain Practice: The Official Journal of World Institute of Pain8(4), 287–313. https://doi.org/10.1111/j.1533-2500.2008.00204.x

47. Lichtenstein, G. R., Feagan, B. G., Cohen, R. D., Salzberg, B. A., Diamond, R. H., Price, S., Langholff, W., Londhe, A., & Sandborn, W. J. (2012). Serious infection and mortality in patients with Crohn’s disease: More than 5 years of follow-up in the TREATTM registry. The American Journal of Gastroenterology107(9), 1409–1422. https://doi.org/10.1038/ajg.2012.218

48. Weng, T.-C., Chen, C.-C., Toh, H.-S., & Tang, H.-J. (2011). Ibuprofen worsens Streptococcus pyogenes soft tissue infections in mice. Journal of Microbiology, Immunology and Infection44(6), 418–423. https://doi.org/10.1016/j.jmii.2011.04.012

49. Souyri, C., Olivier, P., Grolleau, S., Lapeyre-Mestre, M., & French Network of Pharmacovigilance Centres. (2008). Severe necrotizing soft-tissue infections and nonsteroidal anti-inflammatory drugs. Clinical and Experimental Dermatology33(3), 249–255. https://doi.org/10.1111/j.1365-2230.2007.02652.x

50. Demeslay, J., De Bonnecaze, G., Vairel, B., Chaput, B., Pessey, J.-J., Serrano, E., & Vergez, S. (2014). Possible role of anti-inflammatory drugs in complications of pharyngitis. A retrospective analysis of 163 cases. European Annals of Otorhinolaryngology, Head and Neck Diseases131(5), 299–303. https://doi.org/10.1016/j.anorl.2013.08.005

51. Liang, X., Liu, R., Chen, C., Ji, F., & Li, T. (2016). Opioid system modulates the immune function: A review. Translational Perioperative and Pain Medicine1(1), 5.

52. Jamali, A., Mahdavi, M., Shahabi, S., Hassan, Z. M., Sabahi, F., Javan, M., Farsani, M. J., Parsania, M., & Bamdad, T. (2007). Naloxone, an opioid receptor antagonist, enhances induction of protective immunity against HSV-1 infection in BALB/c mice. Microbial Pathogenesis43(5–6), 217–223.

53. Mischel, R. A., Muchhala, K. H., Dewey, W. L., & Akbarali, H. I. (2020). The “Culture” of Pain Control: A Review of Opioid-Induced Dysbiosis (OID) in Antinociceptive Tolerance. The Journal of Pain21(7), 751–762. https://doi.org/10.1016/j.jpain.2019.11.015

54. Babrowski, T., Holbrook, C., Moss, J., Gottlieb, L., Valuckaite, V., Zaborin, A., Poroyko, V., Liu, D. C., Zaborina, O., & Alverdy, J. C. (2012). Pseudomonas aeruginosa virulence expression is directly activated by morphine and is capable of causing lethal gut derived sepsis in mice during chronic morphine administration. Annals of Surgery255(2), 386.

55. Meng, J., Yu, H., Ma, J., Wang, J., Banerjee, S., Charboneau, R., Barke, R. A., & Roy, S. (2013). Morphine induces bacterial translocation in mice by compromising intestinal barrier function in a TLR-dependent manner. PloS One8(1), e54040.

56. Foster, K. R., Schluter, J., Coyte, K. Z., & Rakoff-Nahoum, S. (2017). The evolution of the host microbiome as an ecosystem on a leash. Nature548(7665), 43–51.

57. Sharma, U., Olson, R. K., Erhart, F. N., Zhang, L., Meng, J., Segura, B., Banerjee, S., Sharma, M., Saluja, A. K., Ramakrishnan, S., Abreu, M. T., & Roy, S. (2020). Prescription Opioids induce Gut Dysbiosis and Exacerbate Colitis in a Murine Model of Inflammatory Bowel Disease. Journal of Crohn’s and Colitis14(6), 801–817. https://doi.org/10.1093/ecco-jcc/jjz188

58. Finlay, B. B., & McFadden, G. (2006). Anti-immunology: Evasion of the host immune system by bacterial and viral pathogens. Cell124(4), 767–782. https://doi.org/10.1016/j.cell.2006.01.034

59. Hess, S., & Rambukkana, A. (2019). Cell Biology of Intracellular Adaptation of Mycobacterium leprae in the Peripheral Nervous System. Microbiology Spectrum7(4). https://doi.org/10.1128/microbiolspec.BAI-0020-2019

60. Robbins, G., Tripathy, V. M., Misra, V. N., Mohanty, R. K., Shinde, V. S., Gray, K. M., & Schug, M. D. (2009). Ancient skeletal evidence for leprosy in India (2000 B.C.). PloS One4(5), e5669. https://doi.org/10.1371/journal.pone.0005669

61. Tayeh, A., Cairncross, S., & Cox, F. E. G. (2017). Guinea worm: From Robert Leiper to eradication. Parasitology144(12), 1643–1648. https://doi.org/10.1017/S0031182017000683

62. Pavone, F., Luvisetto, S., Marinelli, S., Straface, E., Fabbri, A., Falzano, L., Fiorentini, C., & Malorni, W. (2009). The Rac GTPase-activating bacterial protein toxin CNF1 induces analgesia up-regulating mu-opioid receptors. Pain145(1–2), 219–229. https://doi.org/10.1016/j.pain.2009.06.026

63. Golabi, M., Naem, S., Imani, M., & Dalirezh, N. (2016). Evidence of morphine like substance and μ-opioid receptor expression in Toxacara canis (Nematoda: Ascaridae). Veterinary Research Forum: An International Quarterly Journal7(4), 335–339.

64. Zhu, W., Pryor, S. C., Putnam, J., Cadet, P., & Stefano, G. B. (2004). Opiate alkaloids and nitric oxide production in the nematode Ascaris suum. The Journal of Parasitology90(1), 15–22. https://doi.org/10.1645/GE-3208

65. Zhu, W., Baggerman, G., Secor, W. E., Casares, F., Pryor, S. C., Fricchione, G. L., Ruiz-Tiben, E., Eberhard, M. L., Bimi, L., & Stefano, G. B. (2002). Dracunculus medinensis and Schistosoma mansoni contain opiate alkaloids. Annals of Tropical Medicine and Parasitology96(3), 309–316. https://doi.org/10.1179/000349802125000808

66. Blake, K. J., Baral, P., Voisin, T., Lubkin, A., Pinho-Ribeiro, F. A., Adams, K. L., Roberson, D. P., Ma, Y. C., Otto, M., Woolf, C. J., Torres, V. J., & Chiu, I. M. (2018). Staphylococcus aureus produces pain through pore-forming toxins and neuronal TRPV1 that is silenced by QX-314. Nature Communications9. https://doi.org/10.1038/s41467-017-02448-6

67. Zhan, S. H., & French, L. (2019). Sequence similarity searches for morphine biosynthesis enzymes in bacteria yield putative targets for understanding associations between infection and opiate administration. Journal of Medical Microbiology, 68(6), 952–956. https://doi.org/10.1099/jmm.0.001001

68. Moutal, A., Martin, L. F., Boinon, L., Gomez, K., Ran, D., Zhou, Y., Stratton, H. J., Cai, S., Luo, S., Gonzalez, K. B., Perez-Miller, S., Patwardhan, A., Ibrahim, M. M., & Khanna, R. (2020). SARS-CoV-2 Spike protein co-opts VEGF-A/Neuropilin-1 receptor signaling to induce analgesia. PAINArticles in Press. https://doi.org/10.1097/j.pain.0000000000002097

69. Kikkert, M. (2020). Innate Immune Evasion by Human Respiratory RNA Viruses. Journal of Innate Immunity12(1), 4–20. https://doi.org/10.1159/000503030

70. Cornblath, D. R., & McArthur, J. C. (1988). Predominantly sensory neuropathy in patients with AIDS and AIDS-related complex. Neurology38(5), 794–794.

71. Hyoju, S. K., Zaborin, A., Keskey, R., Sharma, A., Arnold, W., van den Berg, F., Kim, S. M., Gottel, N., Bethel, C., & Charnot-Katsikas, A. (2019). Mice fed an obesogenic Western diet, administered antibiotics, and subjected to a sterile surgical procedure develop lethal septicemia with multidrug-resistant pathobionts. MBio10(4), e00903–19.

72. Pham, T. A. N., & Lawley, T. D. (2014). Emerging insights on intestinal dysbiosis during bacterial infections. Current Opinion in Microbiology17, 67–74. https://doi.org/10.1016/j.mib.2013.12.002

73. Amaral, F. A., Sachs, D., Costa, V. V., Fagundes, C. T., Cisalpino, D., Cunha, T. M., Ferreira, S. H., Cunha, F. Q., Silva, T. A., Nicoli, J. R., Vieira, L. Q., Souza, D. G., & Teixeira, M. M. (2008). Commensal microbiota is fundamental for the development of inflammatory pain. Proceedings of the National Academy of Sciences105(6), 2193–2197. https://doi.org/10.1073/pnas.0711891105

74. Shen, S., Lim, G., You, Z., Ding, W., Huang, P., Ran, C., Doheny, J., Caravan, P., Tate, S., Hu, K., Kim, H., McCabe, M., Huang, B., Xie, Z., Kwon, D., Chen, L., & Mao, J. (2017). Gut microbiota is critical for the induction of chemotherapy-induced pain. Nature Neuroscience20(9), 1213–1216. https://doi.org/10.1038/nn.4606

75. Yang, C., Fang, X., Zhan, G., Huang, N., Li, S., Bi, J., Jiang, R., Yang, L., Miao, L., Zhu, B., Luo, A., & Hashimoto, K. (2019). Key role of gut microbiota in anhedonia-like phenotype in rodents with neuropathic pain. Translational Psychiatry9(1), 1–11. https://doi.org/10.1038/s41398-019-0379-8

76. Chichlowski, M., & Rudolph, C. (2015). Visceral Pain and Gastrointestinal Microbiome. Journal of Neurogastroenterology and Motility21(2), 172–181. https://doi.org/10.5056/jnm15025

77. Akbarali, H. I., & Dewey, W. L. (2019). Gastrointestinal motility, dysbiosis and opioid-induced tolerance: Is there a link? Nature Reviews. Gastroenterology & Hepatology16(6), 323–324. https://doi.org/10.1038/s41575-019-0150-x

78. Grunspan, D. Z., Nesse, R. M., Barnes, M. E., & Brownell, S. E. (2018). Core principles of evolutionary medicineA Delphi study. Evolution, Medicine, and Public Health2018(1), 13–23. https://doi.org/10.1093/emph/eox025

79. Manus, M. B. (2018). Evolutionary mismatch. Evolution, Medicine, and Public Health2018(1), 190–191. https://doi.org/10.1093/emph/eoy023

80. Bennett, K. (2018). Environment of Evolutionary Adaptedness (EEA). In V. Zeigler-Hill & T. K. Shackelford (Eds.), Encyclopedia of Personality and Individual Differences (pp. 1–3). Springer International Publishing. https://doi.org/10.1007/978-3-319-28099-8_1627-1

81. Cron, D. C., Englesbe, M. J., Bolton, C. J., Joseph, M. T., Carrier, K. L., Moser, S. E., Waljee, J. F., Hilliard, P. E., Kheterpal, S., & Brummett, C. M. (2017). Preoperative Opioid Use is Independently Associated With Increased Costs and Worse Outcomes After Major Abdominal Surgery. Annals of Surgery265(4), 695–701. https://doi.org/10.1097/SLA.0000000000001901

82. Mora, A. L., Salazar, M., Pablo-Caeiro, J., Frost, C. P., Yadav, Y., DuPont, H. L., & Garey, K. W. (2012). Moderate to high use of opioid analgesics are associated with an increased risk of Clostridium difficile infection. The American Journal of the Medical Sciences343(4), 277–280. https://doi.org/10.1097/MAJ.0b013e31822f42eb

83. Edelman, E. J., Gordon, K. S., Crothers, K., Akgün, K., Bryant, K. J., Becker, W. C., Gaither, J. R., Gibert, C. L., Gordon, A. J., Marshall, B. D. L., Rodriguez-Barradas, M. C., Samet, J. H., Justice, A. C., Tate, J. P., & Fiellin, D. A. (2019). Association of Prescribed Opioids With Increased Risk of Community-Acquired Pneumonia Among Patients With and Without HIV. JAMA Internal Medicine179(3), 297–304. https://doi.org/10.1001/jamainternmed.2018.6101

84. Wiese, A. D., Griffin, M. R., Schaffner, W., Stein, C. M., Greevy, R. A., Mitchel, E. F., & Grijalva, C. G. (2018). Opioid Analgesic Use and Risk for Invasive Pneumococcal Diseases: A Nested Case-Control Study. Annals of Internal Medicine168(6), 396–404. https://doi.org/10.7326/M17-1907

85. Wiese, A. D., Griffin, M. R., Stein, C. M., Mitchel Jr, E. F., & Grijalva, C. G. (2016). Opioid analgesics and the risk of serious infections among patients with rheumatoid arthritis: A self-controlled case series study. Arthritis & Rheumatology68(2), 323–331.

86. Meng, J., Sindberg, G. M., & Roy, S. (2015). Disruption of gut homeostasis by opioids accelerates HIV disease progression. Frontiers in Microbiology6. https://doi.org/10.3389/fmicb.2015.00643

%d bloggers like this: