

2010 unm evolutionary medicine – Joe Alcock MD

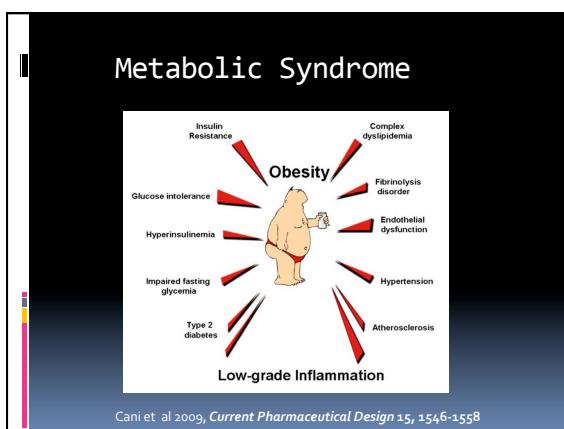
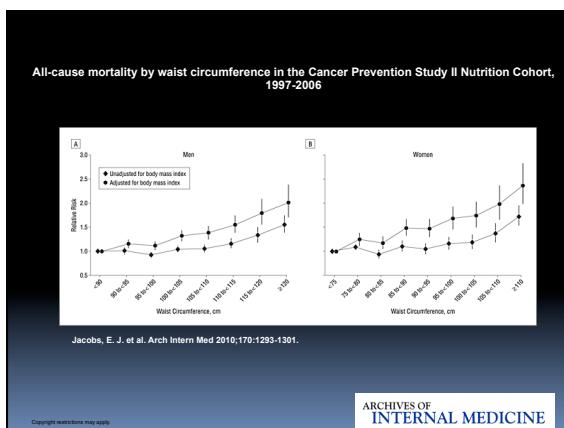
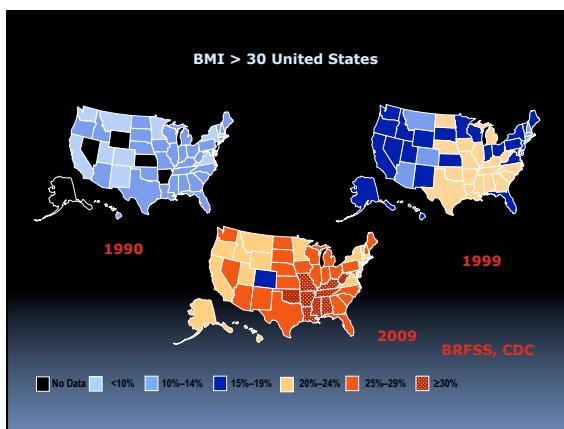
FAT & INFLAMMATION

Key Questions

- Can we understand why overweight is epidemic?
- Is obesity harmful and why?
- What is the relationship between energy excess, energy deprivation and disease?
- What makes some foods “good for us” and others not?

Part 1

- Energy and Longevity
- Energy Excess
- Energy Restriction

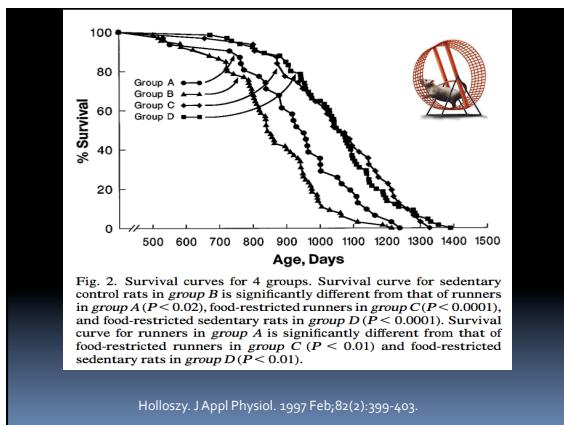
No free lunch

- Much energy spent in food gathering and preparation

Stone age food processor

Fewer calories = health?

Calorie consumption: The rhesus monkey on the left, Canto, eats a calorie-restricted diet and is 27 years old. The monkey on the right, Owen, consumes a normal diet and is 29. Credit: University of Wisconsin-Madison / Jeff Miller.



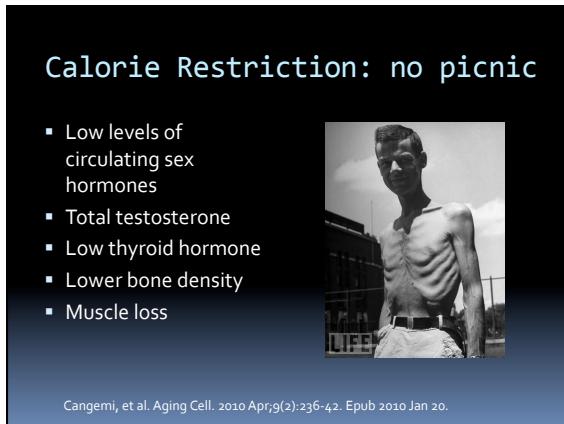
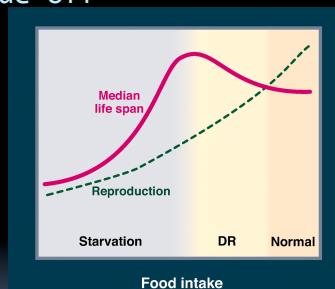


Table 3. Serial measurements of risk factors for atherosclerosis in CR individuals			
Parameter	Value		
	Pre-CR	=1 yr CR	Present
BMI, kg/m^2	24.5 \pm 2.6	20.9 \pm 2.4	19.5 \pm 2.1
TChol, mg/dl	194 \pm 45	161 \pm 31	157 \pm 38
LDL-C, mg/dl	122 \pm 36	89 \pm 24	86 \pm 17
HDL-C, mg/dl	43 \pm 8	58 \pm 13	65 \pm 24
TChol/HDL-C ratio	4.1 \pm 1	2.8 \pm 0.5	2.5 \pm 0.4
TG, mg/dl	149 \pm 87	72 \pm 35	54 \pm 15
Systolic BP, mmHg	132 \pm 15	112 \pm 12	97 \pm 8
Diastolic BP, mmHg	80 \pm 11	69 \pm 7	59 \pm 5

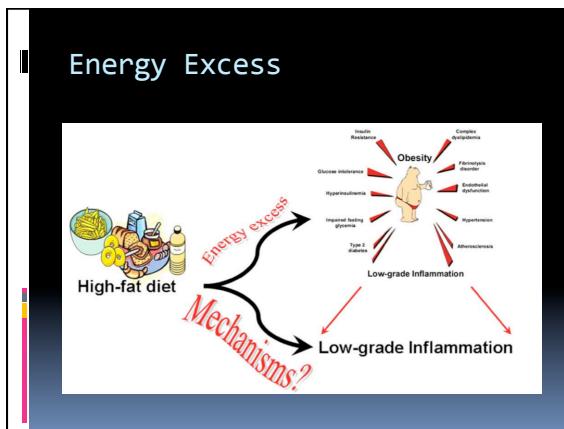
Fontana et al Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6659-63.



CR versus Starvation

- Starvation increases bacterial translocation in rodents (Nettelbladt 1997; Bark 1995)
- Human pre-natal famine exposure \uparrow CVD Dutch famine winter (Roseboom 2000)
- Human post-natal famine exposure \uparrow CVD siege of Leningrad (Sparen 2004).

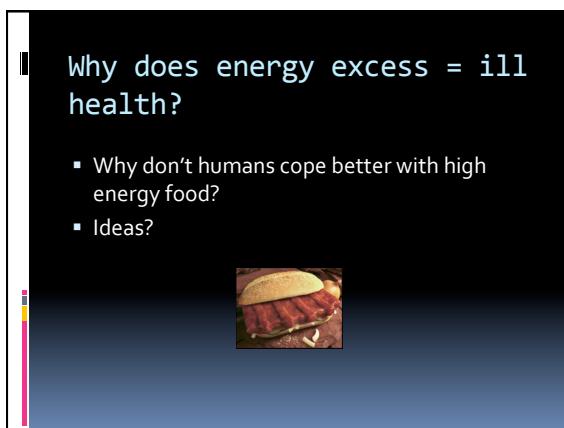
Trade-off

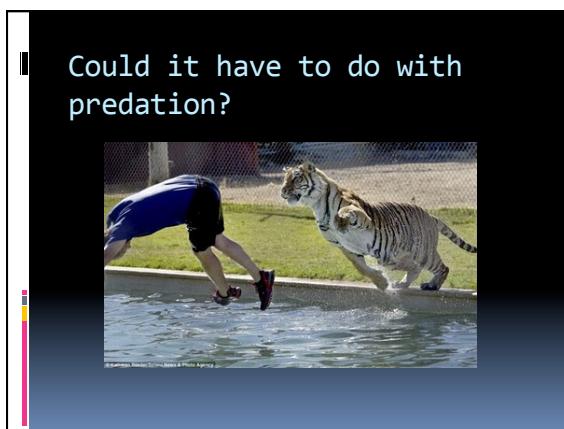


The median life span and fecundity of higher eukaryotes are negatively affected by a very low food intake

L. Fontana et al., Science 328, 321-326 (2010)

Natural Selection & Gastronomy





What about micro-predators

- 100 trillion cells
- 9 of 10 do not belong to you!
- Majority in your gut

Food poisoning

- "The pro-inflammatory responses to fatty foods could have evolved as protection from infectious pathogens that have been common in food, until recently"

C.E. Finch, 2007. *The Biology of Human Longevity*. Academic Press.

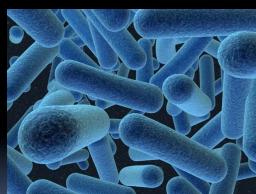
Infection and Thrifty Genes

- "pro-inflammatory defenses in partnership with the metabolic syndrome infection may have provided an evolutionary advantage in the tuberculosis pandemic"

Roth 2009 *JAMA*. 301(24):2586-2588.

Part two

- The Microbiome and Obesity



You share nutrients with gut bacteria

Within minutes of your Grand Slam..

These appear in the blood:

- oxygen radicals
- inflammatory cytokines (TNF alpha, IL-6)
- lipopolysaccharide
- bacteria

(Cani et al. 2007; Cani et al. 2008; Ghanim et al. 2009).

Germ free mice

- Mice raised in sterile conditions remain lean
- After exposure to a pellet of mouse fecal flora – mice rapidly become obese

Backhed et al. Proc Natl Acad Sci USA 2007; 104:979-84

Do bacteria make you fat?

- Mice lacking TLR receptor – have different gut bacteria
- Metabolic syndrome and obesity.
- Feeding WT mice a fecal pellet from obese knockout mice induced the same phenotype

Vijay-Kumar, et al. *Science* 328, 228 (2010)

Overweight humans have altered microbiota

- Shifts in 2 major phyla
- Inverse relationship between Bacteroidetes & waist circumference

Tiihonen et al. *British Journal of Nutrition* (2010), 103, 1070–1078

Weight gain in pregnancy

▪ Mothers with weight gain in pregnancy have altered gut microbiota –	▪ Babies Fewer Bifidobacteria at 6 months
Fewer Bifidobacteria	Fewer Bacteroidetes and higher <i>Clostridium</i> spp.

Collado et al. 2010 *Am J Clin Nutr* Nov;92(5):1023-30.

Antibiotics for obesity and diabetes?

- norfloxacin / ampicillin / neomycin
 - Reduces obesity
 - Reverses insulin resistance
 - Prevents bacterial proteins from appearing in blood

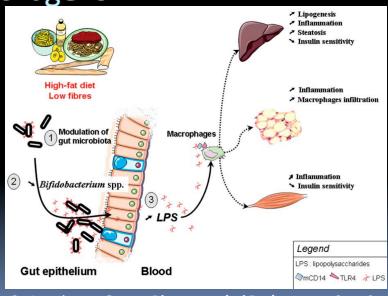
Cani et al. *Diabetes*, 2008 Jun;57(6):1470-81.
Chou et al. 2008 *Nestle Nutr Workshop Ser Pediatr Program*. 62:127-37

If weight gain is in response to bacteria...

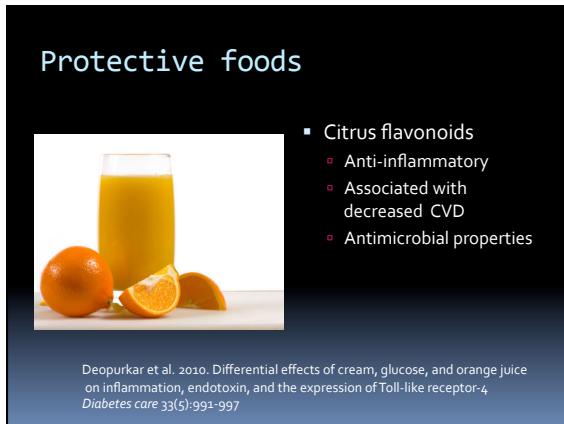
- Why?
- What is the function of fat?

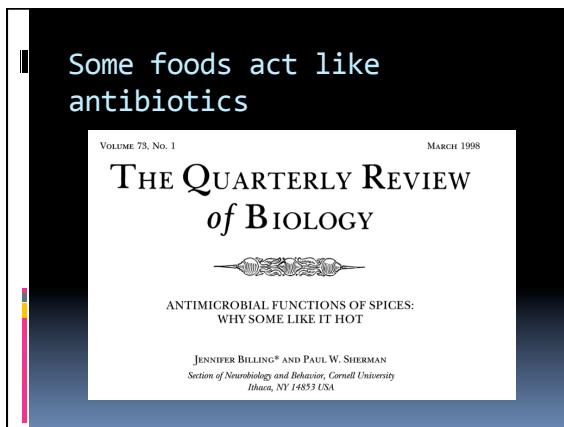
Part 3

Nutrients as immune modulating signals



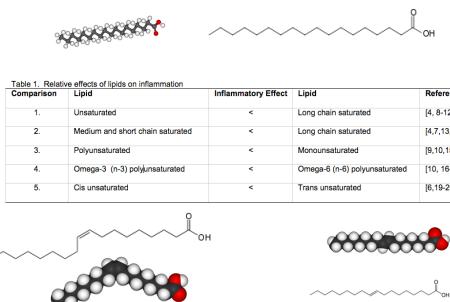
Some foods promote potential pathogens





Hypothesis

- Anticipatory Immune Signaling
- Nutrients offer the host a signal that predicts risk from the microbiome

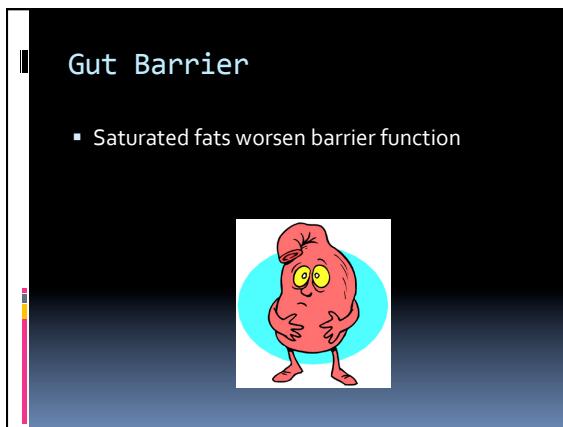


Fatty Acids and Inflammation

Anticipatory signaling

- Prediction:
 - Nutrients that have anti-pathogen effects will serve an anti-inflammatory signaling function
 - Nutrients that promote pathogens will have a pro-inflammatory signaling function

Saturated Fat


Unsaturated fatty acids studied	Antimicrobial components	Saturated fatty acids studied	Pathogens studied	Are unsaturated lipids more antimicrobial?	References
even C14:1-C22:1 C18:1 elaidic C18:1 petroselinic C18:1 trans vaccenic C18:2, C18:3 C20:2, C20:3, C20:4 C20:5, C22:6	>	even C14:0 – C22:0	<i>Candida albicans</i> <i>Clostridium perfringens</i> <i>Clostridium botulinum</i> <i>Escherichia coli</i> <i>Cytophagidae parvus</i> <i>Enterococcus</i> <i>Helicobacter pylori</i> <i>Listeria monocytogenes</i> <i>Salmonella typhimurium</i> <i>Staphylococcus aureus</i> <i>Streptococcus Group A</i> <i>Streptococcus Group B</i>	Y (22)	(Rodtack 1942; HASSINEN et al. 1951; Willert and Moes 1966; Fuller and Moore 1967; Galbraith et al. 1971; Kohler and Kuehne 1972; Kuehne 1972b; Kuhn and Vahl 1977; Greenway and Dyke 1979; Caruso and Damasio 1980; Kuhn and Vahl 1980; Kuhn and Melly 1986; Abhawach et al. 1992; Wang and Hsu 1993; Peischow et al. 1995; Hsu et al. 2003; Skarzynska et al. 2005; Zheng et al. 2005; Kelley et al. 2006; Sun et al. 2006; Kuhn and Kuhn-Kuhnenfeld 2008; Babu et al. 2009)*
even C6:1-C10:1 C16:1, C18:1 C18:2 C18:3 C18:4 C18:1 elaidic C18:1 cis vaccenic	<	even C6:0-C10:0 C16:0-C18:0 MG C12:0	<i>Candida albicans</i> <i>Clostridium perfringens</i> <i>Acromyces hydrophila</i> <i>Helicobacter pylori</i> <i>Listeria monocytogenes</i> <i>Staphylococcus aureus</i>	no	(Cana-Rodriguez and Smith 1966; Black and Smith 1967; Smith and 1981; van der Kooij and Hijnen 1988; Peischow et al. 1996; Mbandi et al. 2004)

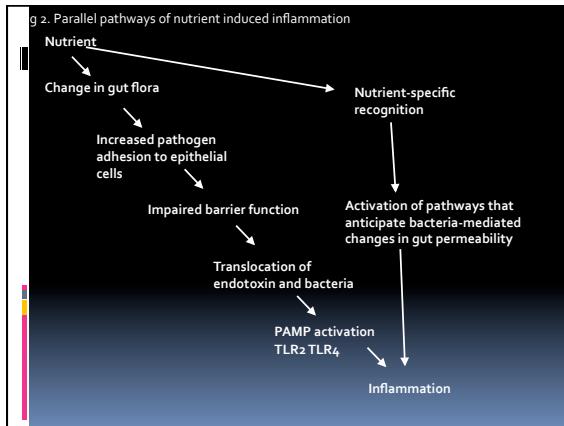
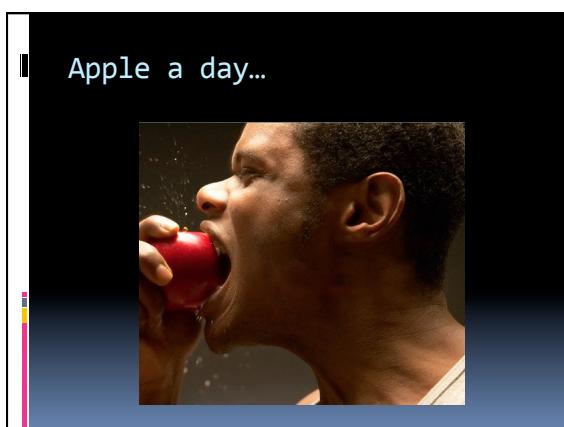

Dietary fat and inflammation

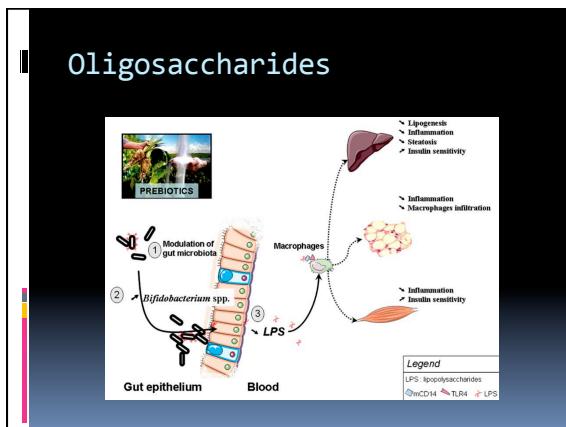
Table 4: Contingency table analysis of published reports showing antimicrobial activity and inflammatory effect for lipids in different classes.			
Fatty acid	More Antimicrobial Lipid*	More Inflammatory Lipid**	p value (Fisher's exact test)
Saturated Unsaturated	6 22	8 0	p < 0.001
Long Chain Saturated Short/Medium Chain Saturated	3 35	3 1	p = 0.007
Monounsaturated Polyunsaturated	5 25	4 0	p = 0.004
Omega 6 Omega 3	8 14	7 1	p = 0.035
trans fatty acid cis fatty acid	3 7	4 0	p = 0.01

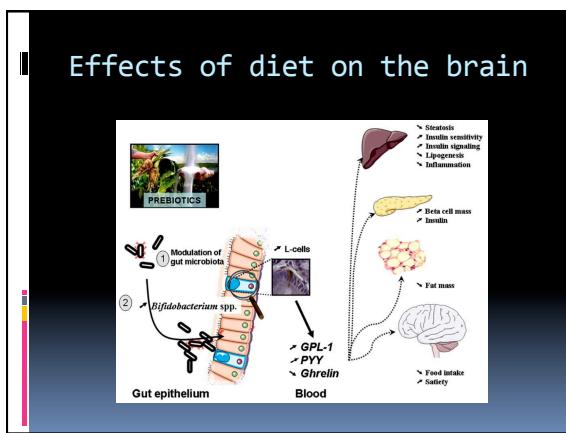
©Alcock Franklin and Kuzawa, unpublished data

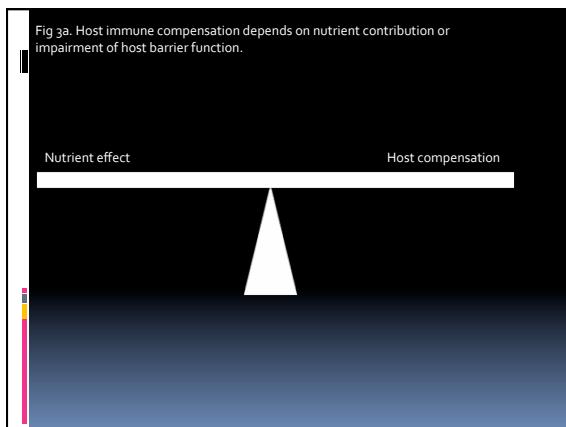
How about Carbohydrates?

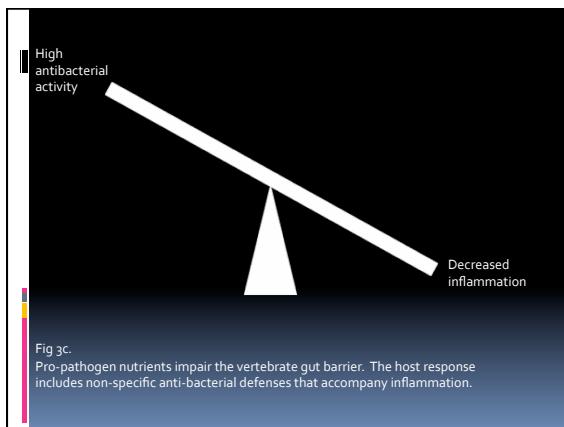
- Fructose increases permeability to endotoxin in mice, an effect that is reduced when antibiotics are co-administered (Bergheim 2008).

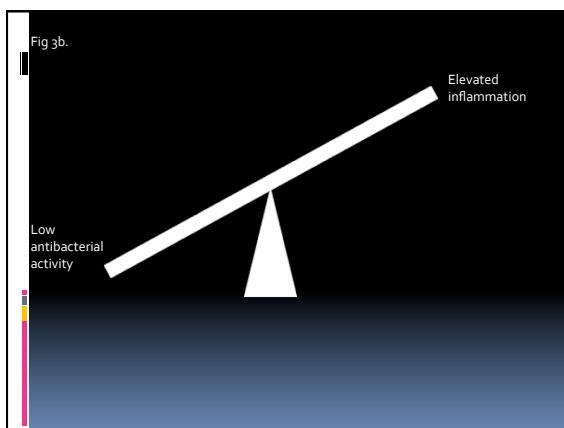












Summary Points

- Both under and over-nutrition are harmful because both states give advantages to pathogens
- “Good” foods feed benign intestinal bacteria
- “Bad” foods feed pathogens
- Pathogens force host to invest in costly defenses
- Defenses can turn on the host...
