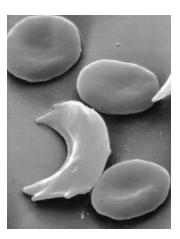
Evolution of Sickle Cell Disease


ERYTHROCYTE POLYMORPHISMS AND MALARIA

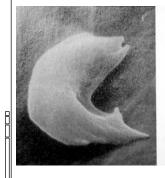
10 year old girl

- Goes to clinic with severe chest pain
- Many visits for joint pains & exhaustion
- Labeled a hypochondriac
- Blood count revealed low rbcs

Blood smear

Sickle Cell Disease

- 70 million Americans have Sickle Cell Disease
- 2 million are carriers of Sickle Cell Trait
- Most have SubSaharan African Ancestry
- 1 in 12 African Americans has Sickle Cell Trait


Sickle Cell Disease

- Catastrophic disease of children
- Attacks occur when oxygen levels in blood drop
- Red blood cells deform & assume sickle shape
- Sickle cells tend to trap other blood cells, cause "sludging".
- Severe sludging deprives tissues of oxygen and can kill muscle and bone.

Sickle cell disease - Why?

- Proximate hypothesis?
- Ultimate hypothesis?

Hemoglobin

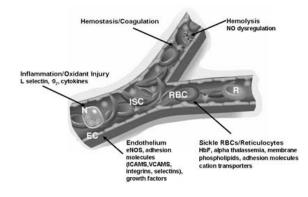
Hemoglobin

Oxygen transport –
 Picks up oxygen from the pulmonary veins –
 drops off oxygen in tissues and capillary beds

- Contains iron
- Red blood cells

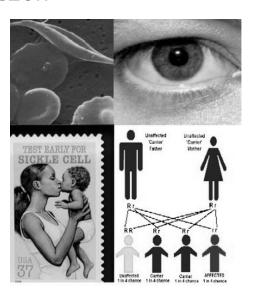
Mutation of Beta Hemoglobin

183944_Translat
29436_Translate
consensus


MVHLTPVEKSAVTAXWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGD
MVHLTP-EKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGD
183944_Translate
consensus

193944_Translate
193944_Translate
29436_Translate
29436_Translate
29436_Translate
consensus

PEMFRLIGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH
PEMFRLIGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH


Blockage of circulation

Genetic Modulation of Sickle Cell Disease

Human Variation

- HbAA –
 homozygote
 "normal
 hemoglobin"
- HbAS –
 heterozygote
 sickle cell trait
- HbSS homozygote sickle cell

Inheritance

- Sickle Cell is inheritence is autosomal recessive
- Hb AA
- Hb AS usually no symptoms
- Hb SS manifests as sickle cell disease

Sickle Cell Disease

- High Mortality:
- Males with HbSS Age 42 years
- Females with HbSS Age 48 years
- Anemia
- Chest Pain
- Stroke

Marginal malaria/ epidemic prone

Susceptibility to Bacterial Infections

Geography

> 0.15 0.10-0.15 0.05-0.10 < 0.05

Maps showing the correlation between the geographic incidence of malaria and the allele frequencies for HbS and α^{*} -thalassaemia in sub-Saharan Africa. Deletions of the $-\alpha^{3.7}$ type cause most a*-thalassaemia in Africa. Reprinted by permission from Macmillan Publishers Ltd: *Nature Genetics* [68], copyright (2005).

> 0.40 0.20-0.40 0.10-0.20 < 0.10

Geography

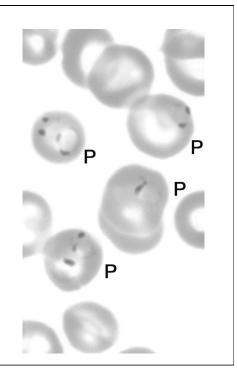
- SCD occurs in places with malaria
- First described in southern Italy
- Then noticed in subsaharan Africa
- Sickle cell trait absent in places like Kenyan highlands where mosquito and malaria absent

Inheritance

- Sickle Cell is inheritence is autosomal recessive
- Hb AA
- HB as Benefit in Malaria?
- Hb SS manifests as sickle cell disease
- Concept balanced polymorphism
- Heterozygous advantage.

Another Case

- January 2006, a US family of 5 kids visit Nigeria
- Pre-trip: pediatrician gives antidiarrheals only
- No chemoprophylaxis
- 3 kids all given Fansidar for fever during trip.
- Kids felt better


3 had return of fever in US

- Diagnosed with flu
- Given antibiotics at the local clinic
- Then they got sicker
- Mom notices 1 child is very weak and has yellow eyes!

Yellow Kid

- Yellow pupils
- Anemic
- Low Blood Sugar
- 1 in 20 rbcs parasitized
- Placed on Ventilator
- Transfused
- All 5 kids tested pos for falciparum malaria

Malaria

- 400 million cases worldwide
- Malaria kills 1,500,000 yearly
- Young children and pregnant women
- Immunity partial, not durable
- 30,000 travelers: preventable illness

Malaria Vector & Pathogen

- Female Anopheles Crepuscular hours.
- Congenital and transfusion related cases
- Autochthonous: single mosquito transmits disease from 1 human to another

Severe Malaria

- Cerebral malaria: seizures, coma
- Severe anemia, red cells burst
- Hemoglobin in urine
- Fluid in lungs
- Loss of platelets
- Cardiovascular collapse and shock
- Blood becomes acidic

Malaria Pathogenesis

- Malaria parasites digest RBC proteins and use glucose to lactic acid as energy, thus hypoglycemia & acidosis.
- Injure RBC membrane: hemolysis, splenic clearance & anemia.
- Makes blood cells sticky obstruct microcirculation
- Thrombocytopenia splenic sequestration

Malaria benefit?

- Carriers of sickle cell trait have better survival from early bouts of malaria
- Could protection from malaria be selective force that maintains sickle cell rbc mutation in the population?

HbSS

- Full blown sickle cell disease
- Increased mortality from sickle cell attacks.
- In locations like Chicago, with no malaria, this genetic polymorphism would be subject to negative selection.
- What about in coastal Kenya?

HbAS

- Admitted to hospital less in malarious regions
- Die less often than HbAA in malarious regions
- Protect against severe malaria infection
- Infected rbcs sickle 40 times more readily than non infected cells
- Decreased parasite reproduction
- Increased clearance from the population.

Selection for HbAS

- Outweighs negative selection for HbSS
- Maintains HbS allele in population
- Frequency of allele is dependent on presence of malaria
- Balanced polymorphism

So how does HbAS protect against malaria?

- Evolutionary hypothesis can lead to insights into the proximate mechanisms of disease.
- Physiology and pathophysiology intersect...

Sickle Cell Anemia HbSS:

- Cells sickle cause obstruction of microcirculation
- Anemia Sickled cells have enhanced removal from circulation
- Increased phagocytosis of rbcs
- Increased oxidative stress on rbc membrane
- Spelenic sequestration of rbcs

Malaria: Sickle trait promotes removal of parasites!

- HbSS without malaria:
- Cells sickle cause obstruction of microcirculation
- Anemia Sickled cells have enhanced removal from circulation
- Increased phagocytosis Increased oxidative stress on rbc membrane
- Sequestration of abnormal rbcs

- HbAS and Malaria:
- Cells sickle cause obstruction of microcirculation
- Anemia Sickled cells have enhanced removal from circulation
- Increased phagocytosis
- Increased oxidative stress on rbc membrane
- Sequestration of abnormal rbcs

Other polymorphisms that may protect against malaria

Membrane proteins

Duffy blood-group negativity
Gerbich blood group negativity
Ovalocytosis as a result of deletions
in the band 3 gene
Complement receptor proteins

RBC enzymes

Glucose-6-phosphate dehydrogenase deficiency

Pyruvate kinase deficiency

Haemoglobinopathies

Structural haemoglobin variants

Haemoglobin C Haemoglobin E

Haemoglobin S

The thalassaemias

ine thalassaemias

α-thalassaemia

Language

- Compare:
- Red blood cell defects and malaria
 Mol Biochem Parasitol. 2006 Oct;149(2):121-7. Epub 2006 Jun 9
- Erythrocyte variants and the nature of their malaria protective effect

Cellular Microbiology 7 (6): 753-763 2005

Host defenses or pathogen virulence factors?

Genes that cause disease

- If they are common, they probably have some current or historical selective pressure that keeps them around
- Deleterious mutations occur at rates 1:50,000
- Some genes are very frequent e.g. 20% of population or more: raise questions

Factor V Leiden

- Most common hypercoagulable state that associated with Deep Vein Thrombosis
- Way too common to be a sporadic mutation up to 20% in some populations
- Positive selective pressure promotes its persistence?
- What might that be?

Summary

- Malaria sickle cell trait is a balanced polymorphism
- Genetic polymorphisms ask evolutionary question – what selective pressure or benefit keeps them in population
- Frequency of polymorphism is a clue